β-catenin stabilization enhances SS18-SSX2-driven synovial sarcomagenesis and blocks the mesenchymal to epithelial transition
نویسندگان
چکیده
β-catenin is a master regulator in the cellular biology of development and neoplasia. Its dysregulation is implicated as a driver of colorectal carcinogenesis and the epithelial-mesenchymal transition in other cancers. Nuclear β-catenin staining is a poor prognostic sign in synovial sarcoma, the most common soft-tissue sarcoma in adolescents and young adults. We show through genetic experiments in a mouse model that expression of a stabilized form of β-catenin greatly enhances synovial sarcomagenesis. Stabilization of β-catenin enables a stem-cell phenotype in synovial sarcoma cells, specifically blocking epithelial differentiation and driving invasion. β-catenin achieves its reprogramming in part by upregulating transcription of TCF/LEF target genes. Even though synovial sarcoma is primarily a mesenchymal neoplasm, its progression towards a more aggressive and invasive phenotype parallels the epithelial-mesenchymal transition observed in epithelial cancers, where β-catenin's transcriptional contribution includes blocking epithelial differentiation.
منابع مشابه
Paracrine osteoprotegerin and β-catenin stabilization support synovial sarcomagenesis in periosteal cells.
Synovial sarcoma (SS) is an aggressive soft-tissue sarcoma that is often discovered during adolescence and young adulthood. Despite the name, synovial sarcoma does not typically arise from a synoviocyte but instead arises in close proximity to bones. Previous work demonstrated that mice expressing the characteristic SS18-SSX fusion oncogene in myogenic factor 5-expressing (Myf5-expressing) cell...
متن کاملTargeting the Wnt pathway in synovial sarcoma models.
UNLABELLED Synovial sarcoma is an aggressive soft-tissue malignancy of children and young adults, with no effective systemic therapies. Its specific oncogene, SYT-SSX (SS18-SSX), drives sarcoma initiation and development. The exact mechanism of SYT-SSX oncogenic function remains unknown. In an SYT-SSX2 transgenic model, we show that a constitutive Wnt/β-catenin signal is aberrantly activated by...
متن کاملSynovial sarcoma: recent discoveries as a roadmap to new avenues for therapy.
UNLABELLED Oncogenesis in synovial sarcoma is driven by the chromosomal translocation t(X,18; p11,q11), which generates an in-frame fusion of the SWI/SNF subunit SS18 to the C-terminal repression domains of SSX1 or SSX2. Proteomic studies have identified an integral role of SS18-SSX in the SWI/SNF complex, and provide new evidence for mistargeting of polycomb repression in synovial sarcoma. Two...
متن کاملSYT-SSX1 and SYT-SSX2 interfere with repression of E-cadherin by snail and slug: a potential mechanism for aberrant mesenchymal to epithelial transition in human synovial sarcoma.
Synovial sarcoma is a primitive mesenchymal neoplasm characterized in almost all cases by a t(X;18) fusing the SYT transcriptional coactivator gene with either SSX1 or SSX2, with the resulting fusion gene encoding an aberrant transcriptional regulator. A subset of synovial sarcoma, predominantly cases with the SYT-SSX1 fusion, shows foci of morphologic epithelial differentiation in the form of ...
متن کاملThe fusion protein SS18-SSX1 employs core Wnt pathway transcription factors to induce a partial Wnt signature in synovial sarcoma.
Expression of the SS18/SYT-SSX fusion protein is believed to underlie the pathogenesis of synovial sarcoma (SS). Recent evidence suggests that deregulation of the Wnt pathway may play an important role in SS but the mechanisms whereby SS18-SSX might affect Wnt signaling remain to be elucidated. Here, we show that SS18/SSX tightly regulates the elevated expression of the key Wnt target AXIN2 in ...
متن کامل